Формула частоты. Частота, период сигнала, изменения напряжения, силы тока

Всё на планете имеет свою частоту. Согласно одной из версий, она даже положена в основу нашего мира. Увы, теория весьма сложна, чтобы излагать её в рамках одной публикации, поэтому нами будет рассмотрена исключительно частота колебаний как самостоятельное действие. В рамках статьи будет дано определения этому физическому процессу, его единицам измерений и метрологической составляющей. И под конец будет рассмотрен пример важности в обычной жизни обыкновенного звука. Мы узнаем, что он собой представляет и какова его природа.

Что называют частотой колебаний?

Под этим подразумевают физическую величину, которая используется для характеристики периодического процесса, что равен количеству повторений или возникновений определённых событий за одну единицу времени. Этот показатель рассчитывается как отношение числа данных происшествий к промежутку времени, за который они были совершены. Собственная частота колебаний есть у каждого элемента мира. Тело, атом, дорожный мост, поезд, самолёт - все они совершают определённые движения, которые так называются. Пускай эти процессы не видны глазу, они есть. Единицами измерений, в которых считается частота колебаний, являются герцы. Своё название они получили в честь физика немецкого происхождения Генриха Герца.

Мгновенная частота

Периодический сигнал можно охарактеризовать мгновенной частотой, которая с точностью до коэффициента является скоростью изменения фазы. Его можно представить как сумму гармонических спектральных составляющих, обладающих своими постоянными колебаниями.

Циклическая частота колебаний

Её удобно применять в теоретической физике, особенно в разделе про электромагнетизм. Циклическая частота (её также называют радиальной, круговой, угловой) - это физическая величина, которая используется для обозначения интенсивности происхождения колебательного или вращательного движения. Первая выражается в оборотах или колебаниях на секунду. При вращательном движении частота равняется модулю вектора угловой скорости.

Выражение этого показателя осуществляется в радианах на одну секунду. Размерность циклической частоты является обратной времени. В числовом выражении она равняется числу колебаний или оборотов, что произошли за количество секунд 2π. Её введения для использования позволяет значительно упрощать различный спектр формул в электронике и теоретической физике. Самый популярный пример использования - это обсчёт резонансной циклической частоты колебательного LC-контура. Другие формулы могут значительно усложняться.

Частота дискретных событий

Под этой величиной подразумевают значение, что равно числу дискретных событий, которые происходят за одну единицу времени. В теории обычно используется показатель - секунда в минус первой степени. На практике, чтобы выразить частоту импульсов, обычно применяют герц.

Частота вращения

Под нею понимают физическую величину, которая равняется числу полных оборотов, что происходят за одну единицу времени. Здесь также применяется показатель - секунда в минус первой степени. Для обозначения сделанной работы могут использовать такие словосочетания, как оборот в минуту, час, день, месяц, год и другие.

Единицы измерения

В чём же измеряется частота колебаний? Если брать во внимание систему СИ, то здесь единица измерения - это герц. Первоначально она была введена международной электротехнической комиссией ещё в 1930 году. А 11-я генеральная конференция по весам и мерам в 1960-м закрепила употребление этого показателя как единицы СИ. Что было выдвинуто в качестве «идеала»? Им выступила частота, когда один цикл совершается за одну секунду.

Но что делать с производством? Для них были закреплены произвольные значения: килоцикл, мегацикл в секунду и так далее. Поэтому беря в руки устройство, которое работает с показателем в ГГц (как процессор компьютера), можете примерно представить, сколько действий оно совершает. Казалось бы, как медленно для человека тянется время. Но техника за тот же промежуток успевает выполнять миллионы и даже миллиарды операций в секунду. За один час компьютер делает уже столько действий, что большинство людей даже не смогут представить их в численном выражении.

Метрологические аспекты

Частота колебаний нашла своё применение даже в метрологии. Различные устройства имеют много функций:

  1. Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
  2. Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
  3. Производят анализ спектра.
  4. Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
  5. Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.

Пример работы: звук

Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний - звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.

Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты - к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.

Заключение

Как вы имели возможность узнать, частота колебаний является чрезвычайно важной составляющей, которая позволяет функционировать нашему миру. Благодаря ей мы можем слышать, с её содействия работают компьютеры и осуществляется множество других полезных вещей. Но если частота колебаний превысит оптимальный предел, то могут начаться определённые разрушения. Так, если повлиять на процессор, чтобы его кристалл работал с вдвое большими показателями, то он быстро выйдет из строя.

Подобное можно привести и с человеческой жизнью, когда при высокой частотности у него лопнут барабанные перепонки. Также произойдут другие негативные изменения с телом, которые повлекут за собой определённые проблемы, вплоть до смертельного исхода. Причём из-за особенности физической природы этот процесс растянется на довольно длительный промежуток времени. Кстати, беря во внимание этот фактор, военные рассматривают новые возможности для разработки вооружения будущего.

Квантовомеханического состояния имеет физический смысл энергии этого состояния, в связи с чем система единиц часто выбирается таким образом, что частота и энергия выражаются в одних и тех же единицах (иными словами, переводный коэффициент между частотой и энергией - постоянная Планка в формуле E = h ν - выбирается равным 1).

Глаз человека чувствителен к электромагнитным волнам с частотами от 4⋅10 14 до 8⋅10 14 Гц (видимый свет); частота колебаний определяет цвет наблюдаемого света. Слуховой анализатор человека воспринимает акустические волны с частотами от 20 Гц до 20 кГц . У различных животных частотные диапазоны чувствительности к оптическим и акустическим колебаниям различны.

Отношения частот звуковых колебаний выражаются с помощью музыкальных интервалов , таких как октава , квинта , терция и т. п. Интервал в одну октаву между частотами звуков означает, что эти частоты отличаются в 2 раза , интервал в чистую квинту означает отношение частот 3 ⁄ 2 . Кроме того, для описания частотных интервалов используется декада - интервал между частотами, отличающимися в 10 раз . Так, диапазон звуковой чувствительности человека составляет 3 декады (20 Гц - 20 000 Гц ). Для измерения отношения очень близких звуковых частот используются такие единицы, как цент (отношение частот, равное 2 1/1200) и миллиоктава (отношение частот 2 1/1000).

Энциклопедичный YouTube

    1 / 5

    ✪ В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ

    ✪ Легенда о 20 Гц и 20 кГц. Почему такой диапазон?

    ✪ 432 Гц ремонт ДНК, очистка чакр и ауры. Изохронные ритмы.

    ✪ ЭНЕРГИЯ И ЧАСТОТА ВИБРАЦИИ- НОВАЯ ИГРОВАЯ ПЛОЩАДКА ДЛЯ РАЗУМА.

    ✪ Как за 10 минут повысить частоту вибраций своего тела Исцеление с помощью вибраций Тета хилинг, мед

    Субтитры

Мгновенная частота и частоты спектральных составляющих

Периодический сигнал характеризуется мгновенной частотой, являющейся (с точностью до коэффициента) скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои (постоянные) частоты. Свойства мгновенной частоты и частоты́ спектральной составляющей различны .

Циклическая частота

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν .

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2π секунд. Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / (2 π L C) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители 2π и 1/(2π ), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость .

Частота дискретных событий

Частота дискретных событий (частота импульсов) - физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий - секунда в минус первой степени (русское обозначение: с −1 ; международное: s −1 ). Частота 1 с −1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие .

Частота вращения

Частота вращения - это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения - секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

Единицы измерения

В системе СИ единицей измерения является герц. Единица была первоначально введена в 1930 году Международной электротехнической комиссией , а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам , как единица СИ. До этого в качестве единицы частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц ) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов - электронно-счётные и конденсаторные, для определения частот спектральных составляющих - резонансные и гетеродинные частотомеры, а также анализаторы спектра . Для воспроизведения частоты с заданной точностью используют различные меры - стандарты частоты (высокая точность), синтезаторы частот , генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу .

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 - находится во ВНИИФТРИ .
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 - находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени . Полученное количество разделяется на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {\displaystyle \nu ={\frac {71}{15\,{\mbox{s}}}}\approx 4.7\,{\mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени . Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 T m ) , или же относительной погрешности Δν /ν = 1/(2v T m ) , где T m - временной интервал, а ν - измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора - стробоскопа - является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x ) не равна частоте строба (y ), но пропорциональна ей с целочисленным коэффициентом (2x , 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света .

Другой характеристикой электромагнитных волн является длина волны . Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {\displaystyle \lambda =c/\nu ,}

где с - скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c ′ отличается от скорости света в вакууме (c ′ = c/n , где n - показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {\displaystyle \lambda ={\frac {c}{n\nu }}.}

Ещё одна часто использующаяся характеристика волны - волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ . Иногда эта величина используется с коэффициентом 2π , по аналогии с обычной и круговой частотой k s = 2π/λ . В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {\displaystyle k=1/\lambda ={\frac {n\nu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {\displaystyle k_{s}=2\pi /\lambda ={\frac {2\pi n\nu }{c}}={\frac {n\omega }{c}}.}

Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц укладываются в диапазон от ноты 50 Гц . В Северной Америке (США, Канада, Мексика), Центральной и в некоторых странах северной части Южной Америки (Бразилия, Венесуэла, Колумбия, Перу), а также в некоторых странах Азии (в юго-западной части Японии, в Южной Корее, Саудовской Аравии, на Филиппинах и на Тайване) используется частота 60 Гц . См. Стандарты разъёмов, напряжений и частот электросети в разных странах . Почти все бытовые электроприборы одинаково хорошо работают в сетях с частотой 50 и 60 Гц при условии одинакового напряжения сети. В конце XIX - первой половине XX века, до стандартизации, в различных изолированных сетях использовались частоты от 16, хотя увеличивает потери при передаче на большие расстояния - из-за ёмкостных потерь , роста индуктивного сопротивления линии и потерь на

– физическая величина, являющаяся основной характеристикой периодических процессов или процессов, происходящих по определенным закономерностям. Показывает количество полных колебаний (циклов) за единицу времени.

Колебания – физические процессы, точно или приблизительно повторяющиеся через одинаковые интервалы времени. Колебания, в зависимости от физической природы, бывают двух основных типов: механические, электромагнитные. Иногда выделяют еще смешанный тип, который является комбинацией основных типов.

Типы колебаний

Механические колебания - такие движения тел, при которых через равные интервалы времени координаты движущегося тела, его скорость и ускорение принимают исходные значения.

Электромагнитные - взаимосвязанные колебания магнитного и электрического полей. Возникают в различного рода электрических цепях. Проявляются периодическим изменением во времени одной из электродинамических величин: электрического заряда, силы тока, напряжения, напряженности электрического поля, индукции магнитного поля. Описываются теми же законами, что и механические колебания. Получить данный вид колебаний экспериментально можно с помощью простейшего колебательного контура, включающего в себя катушку индуктивности и конденсатор.

По характеру взаимодействия с окружающей средой колебания подразделяют

Свободные - колебания, происходящие в механической системе под действием внутренних сил системы после кратковременного воздействия внешней силы. Такие колебания называют затухающими.

Вынужденные – колебания, возникающие под действием внешних сил, изменяющихся со временем по величине и направлению. Такие колебания называют незатухающими.

Автоколебания - система изначально имеет запас потенциальной энергии, который и идет на совершение колебаний. Причем амплитуда (величина максимального отклонения от точки равновесия) не зависит от начальных условий, а определяется свойствами системы. Пример: колебательное движение маятника часов под действием тяжести гири или пружины, колебания листьев, веток деревьев под действием постоянного потока воздуха.Также определяют параметрические колебания (возникают при изменении одного из параметров системы) и случайные.

Величины, характеризующие колебания

Понятие «колебания» тесно связано с волнами. Но при колебательном движение, в отличие от волнового, отсутствует процесс переноса энергии из одной точки пространства в другую.

Основными характеристиками колебательного движения, как и волнового, являются период (Т), амплитуда (А) и частота(v иногда f ). Причем период и частота величины взаимообратные – чем больше частота, тем меньше период: Т=1/v . Период – это промежуток времени, за который совершается одно полное колебание (цикл), измеряется в секундах. Соответственно частота измеряется в (1/сек ).

Также единицей измерения частоты в международной метрической системе единиц Си с 1933 года является герц. Единица измерения названа в честь немецкого профессора физики Генриха Рудольфа Герца (1858-1894), который опытным путем, исследуя дифракцию, интерференцию, поляризацию и отражение, подтвердил существование электромагнитных волн. Доказал, что свет является разновидностью электромагнитных волн, чем обосновал существующую электромагнитную теорию света Максвелла. Также Герц занимался изучением электрических полей, возникающих вокруг движущихся тел. На основе наблюдений создал теорию, но опытного подтверждения она не получила. Исследования же внешнего фотоэффекта, проведенные Герцем, легли в основу дальнейших научных изысканий. Также для описания колебательных и волновых процессов используют циклическую частоту, фазу. Циклическая частота показывает количество полных колебаний за единицу времени, равную 2П (где П=3,14), а фаза – это величина смещения в любой, отдельно взятый, момент времени.

Нужно также отметить, что если колебания возможно описать по закону синуса или косинуса, то они являются гармоническими. Соответственно, в уравнении для математического описания обязательно присутствует функция sin или cos.

Понятие частоты и периода периодического сигнала. Единицы измерения. (10+)

Частота и период сигнала. Понятие. Единицы измерения

Материал является пояснением и дополнением к статье:
Единицы измерения физических величин в радиоэлектронике
Единицы измерения и соотношения физических величин, применяемых в радиотехника.

В природе нередко встречаются периодические процессы. Это означает, что какой-то параметр, характеризующий процесс, изменяется по периодическому закону, то есть верно равенство:

Определение частоты и периода

F(t) = F(t + T) (соотношение 1), где t - время, F(t) - значение параметра в момент времени t, а T - некая константа.

Понятно, что если верно предыдущее равенство, то верно и такое:

F(t) = F(t + 2T) Так что, если T - минимальное значение константы, при котором выполнено соотношение 1, то будем называть T периодом

В радиоэлектронике мы исследуем силу тока и напряжение, так что периодическими сигналами будем считать сигналы, для напряжения или силы тока в которых верно соотношение 1.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи


Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова...

Растягиваем диапазон регулировки. Способы точно настроить....
Приемы растягивания диапазона регулировки, обеспечения точной настройки...

Полевой транзистор, КМОП микросхема, операционный усилитель. Монтаж, у...
Как правильно припаять полевой транзистор или КМОП микросхему...

Автоматическое регулирование, поддержание температуры теплоносителя от...
Усовершенствованный термостат отопительного котла, экономящий энергию....

Датчик, индикатор горения, пламени, огня, факела. Поджиг, запал, искро...
Индикатор наличия пламени, совмещенный с запалом на одном электроде...

Обратноходовый импульсный преобразователь напряжения. Силовой ключ - б...
Как сконструировать обратноходовый импульсный источник питания. Как выбрать мощн...

Микросхема 1156ЕУ3, К1156ЕУ3, КР1156ЕУ3, UC1823, UC2823, UC3823. Анало...
Описание микросхемы 1156ЕУ3 (UC1823, UC2823, UC3823) ...


Рассмотрим следующий рисунок:

На нем представлены два одинаковых маятника . Как видно из рисунка, первый маятник колеблется с большим размахом, чем второй. То есть другими словами, крайние положения которые занимает первый маятник находится на большем расстоянии друг от друга, чем у второго маятника.

Амплитуда

  • Амплитуда колебания – наибольшее по модулю отклонение колеблющегося тела от положения равновесия.

Обычно, для обозначения амплитуды колебаний используют букву А. Единицы измерения амплитуды совпадают с единицами измерения длины, то есть это метры, сантиметры, и т.д. В принципе, амплитуду можно записывать в единицах плоского угла, так как каждой дуге окружности будет соответствовать единственный центральный угол.

Говорят, что колеблющееся тело совершает одно полное колебание, когда оно проходит путь равный четырем амплитудам.

Период колебания

  • Период колебания – промежуток времени, за которое тело совершает одно полное колебание.

Период колебания обозначают буквой Т. Единицами измерения периода колебаний Т являются секунды.

Если мы подвесим два одинаковых шарика на разной длинны нитях, и приведем их в колебательное движение, мы заметим, что за одинаковые промежутки времени, они будут совершать различное число колебаний. Шарик, подвешенный на короткой нити будет совершать больше колебаний, чем шарик, подвешенный на длинной нити.

Частота колебаний

  • Частотой колебаний называется количество колебаний которое было совершено в единицу времени.

Частота колебаний обозначается буквой ν (читается как «ню»). Единицы частоты колебаний называются Герцами. Один герц означает одно колебание в секунду.

Период и частота колебаний связаны между собой следующим соотношением:

Частота свободных колебаний называется собственной частотой колебательной системы. Каждая система имеет свою собственную частоту колебаний.

Фаза колебаний

Существует еще такое понятие как фаза колебаний. Два маятника могут иметь одинаковую частоту колебаний, но при это они могут колебаться в разных фазах, то есть их скорости в любой момент времени будут направлены в противоположных направлениях.

  • Если скорости маятников в любой момент времени будут направлены одинаково, то говорят, что маятники колеблются в одинаковых фазах колебаний.

Маятники также могут колебаться с некоторой разностью фаз, в таком случае в некоторые моменты времени направление их скоростей будут совпадать, а в некоторые нет.

Поделиться: