Графические информационные модели. Проверка домашнего задания Приведите различные примеры графических информационных моделей

модели

Разнообразие графических моделей достаточно велико. Рассмотрим некоторые из них.

Графы

Наглядным средством отображения состава и структуры систем являются графы. Рассмотрим пример. Имеется словесное описание некоторой местности.

Район состоит из пяти поселков: Дедкино, Репкино, Бабкино, Кошкино и Мышкино. Автомобильные дороги проложены между: Дедкино и Бабкино, Дедкино и Кошкино, Бабкино и Мышкино, Бабкино и Кошкино, Кошкино и Репкино.

По такому описанию довольно трудно представить себе эту местность. Гораздо легче та же информация воспринимается с помощью схемы. Это не карта местности. Здесь не выдержаны направления по сторонам света, не соблюден масштаб. На этой схеме отражен лишь факт существования пяти поселков и дорожной связи между ними. Такая схема, отображающая элементный состав системы и структуру связей, называется графом.

Составными частями графа являются вершины и ребра. На рисунке вершины отображены кружками – это элементы системы, а ребра изображены линиями – это связи (отношения) между элементами. Глядя на этот граф, легко понять структуру дорожной системы в данной местности.

Построенный граф позволяет, например, ответить на вопрос: через какие поселки надо проехать, чтобы добраться из Репкино в Мышкино? Видно, что есть два возможных пути: 1) Р - К - Б - М и 2) Р- К - Д - Б - М. Можно ли отсюда сделать вывод, что 1-й путь короче 2) –го? Нет, нельзя. Данный граф не содержит количественных характеристик. Это не карта, где соблюдается масштаб и есть возможность измерить расстояние.

Граф, приведенный на следующем рисунке, содержит количественные характеристики. Числа около ребер обозначают длины дорог в километрах. Это пример взвешенного графа. Взвешенный граф может содержать количественные характеристики не только связей, но и вершин. Например, в вершинах может быть указано население каждого поселка. Согласно данным взвешенного графа, оказывается, что второй путь длиннее первого.
Подобные графы еще называют сетью. Для сети характерна возможность множества различных путей перемещения по ребрам между некоторыми парами вершин. Для сетей также характерно наличие замкнутых путей, которые называются циклами. В данном случае имеется цикл: К-Д-Б-К

На рассмотренных схемах каждое ребро обозначает наличие дорожной связи между двумя пунктами. Но дорожная связь действует одинаково в обе стороны: если по дороге можно проехать от Б к М, то по ней же можно проехать и от М к Б (предполагаем, что действует двустороннее движение). Такие графы являются неориентированными, а их связи называются симметричными.

Качественно иной пример графа изображен на следующем рисунке.

Этот пример относится к медицине. Известно, что у разных людей кровь отличается по группе. Существуют четыре группы крови. Оказывается, что при переливании крови от одного человека к другому не все группы совместимы. Граф показывает возможные варианты переливания крови. Группы крови – это вершины графа с соответствующими номерами, а стрелки указывают на возможность переливания одной группы крови человеку с другой группой крови. Например, из этого графа видно, что кровь первой группы можно переливать любому человеку, а человек с первой группой крови воспринимает только кровь своей группы. Видно также, что человеку с IV группой крови можно переливать любую, но его собственную кровь можно переливать только в ту же группу.

Связи между вершинами данного графа несимметричны и поэтому изображаются направленными линиями со стрелками. Такие линии принято называть дугами (в отличие от ребер неориентированных графов). Граф с такими свойствами называется ориентированным. Линия, выходящая и входящая в одну и ту же вершину, называется петлей. В данном примере присутствуют четыре петли.

Дерево – граф иерархической структуры

Весьма распространенным типом систем являются системы с иерархической структурой. Иерархическая структура естественным образом возникает, когда объекты или некоторые их свойства находятся в отношении соподчинения (вложения, наследования). Как правило иерархическую структуру имеют системы административного управления, между элементами которых установлены отношения подчиненности (директор завода – начальники цехов – начальники участков – бригадиры - рабочие). Иерархическую структуру имеют также системы, между элементами которых существуют отношения вхождения одних в другие.

Граф иерархической структуры называется деревом. Основным свойством дерева является то, что между любыми двумя его вершинами существует единственный путь. Деревья не содержат циклов и петель.

Дерево административной структуры РФ

Посмотрите на граф, отражающий иерархическую административную структуру нашего государства: РФ делится на семь административных округов; округа делятся на регионы (области и национальные республики), в состав которых входят города и другие населенные пункты. Такой граф называется деревом.

У дерева существует одна главная вершина, которая называется корнем дерева. Эта вершина изображается вверху; от нее идут ветви дерева. От корня начинается отсчет уровней дерева. Вершины, непосредственно связанные с корнем, образуют первый уровень. От них идут связи к вершинам второго уровня и т.д. Каждая вершина дерева (кроме корня) имеет одну исходную вершину на предыдущем уровне и может иметь множество порожденных вершин на следующем уровне. Такой принцип связи называется “один ко многим”. Вершины, которые не имеют порожденных, называются листьями (на нашем графе это вершины, обозначающие города).

Графическое моделирование результатов научных исследований.

Общую цель научной графики можно сформулировать так: сделать невидимое и абстрактное “видимым”. Последнее слово заключено в кавычки, т.к. эта видимость часто весьма условна. Можно увидеть распределение температуры внутри неоднородно нагретого тела сложной формы без введения в него сотен микродатчиков, т.е. по существу его разрушения? – Да, можно, если есть соответствующая математическая модель и, что очень важно, договоренность о восприятии определенных условностей на рисунке. Можно увидеть распределение металлических руд под землей без раскопок? Строение поверхности чужой планеты по результатам радиолокации? Да, можно, с помощью компьютерной графики и предшествующей ей математической обработки.

Более того, можно “увидеть” и то, что, строго говоря, вообще плохо соответствует слову “видеть”. Так, возникшая на стыке химии и физики наука – квантовая химия – дает нам возможность “увидеть” строение молекулы. Эти изображения – верх абстракции и системы условностей, так как в атомном мире обычные наши понятия о частицах (ядрах, электронах и т.п.) принципиально неприменимы. Однако многоцветное “изображение” молекулы на экране компьютера для тех, кто понимает всю меру его условности, приносит большую пользу, чем тысячи чисел, являющихся результатами вычислений.

Изолинии.

Стандартный прием обработки результатов вычислительного эксперимента – построение линий (поверхностей), называемых изолиниями (изоповерхностями), вдоль которых некоторая функция имеет постоянное значение. Это очень распространенный прием визуализации характеристик некоторого скалярного поля в приближении сплошной среды: изотермы – линии равной температуры; изобары – линии равного давления; изолинии численности экологической популяции на местности и т.д.

Условные цвета, условное контрастирование

Это прием современной научной графики – условная раскраска. Она находит широчайшее применение в самых разных приложениях науки и представляет собой набор приемов по максимально удобной визуализации результатов компьютерного моделирования.

В различных исследованиях температурных полей встает проблема наглядного представления результатов, например, температур на метеорологических картах. Для этого можно рисовать изотермы на фоне карты местности. Но можно добиться еще большей наглядности, учитывая, что большинству людей свойственно воспринимать красный цвет как “горячий”, синий – как “холодный”. Переход по спектру от красного к синему отражает промежуточные значения температур. При поиске полезных ископаемых методами аэросъемки с самолетов или космических спутников компьютеры строят условные цветовые изображения распределений плотности под поверхностью Земли и т.д.

Изображения в условных цветах и контрастах – мощнейший прием научной графики.

  • Не следует путать изучение графического информационного моделирования с изучением технологий обработки графической информации
  • Построение простых графических моделей в форме графов и иерархических структур уместно в базовом курсе информатики.
  • Реализация моделей научной графики через программирование - материал повышенной трудности, практическая отработка которого уместна в профильном курсе информатики.

Задание :

    1. Составить схему ключевых понятий;
  • Подобрать практические задания с решениями для базового и профильного курсов информатики.

Проверка домашнего задания Приведите различные примеры графических информационных моделей. Приведите различные примеры графических информационных моделей. Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Графическая модель вашей квартиры. Что это: карта, схема, чертеж? Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры. Какая форма графической модели (карта, схема, чертеж, график) применима для отображения процессов? Приведите примеры.


Динамическое моделирование






Содержательная постановка задачи В процессе тренировок теннисистов используются автоматы по бросанию мячика в определенное место площадки. Необходимо задать автомату необходимую скорость и угол бросания мячика для попадания в площадку определенного размера, находящуюся на известном расстоянии.




Качественная описательная модель мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с 2 и движение по оси Y можно считать равноускоренным; скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным. скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным.


Математическая модель x = v0· cosα·t y = v0· sinα· t – g· t 2 /2 v0· sinα· t – g· t 2 /2 = 0 t· (v0· sinα – g· t/2) = 0 v0· sinα – g· t/2 = 0 t = (2· v0· sinα)/g x = (v0· cosα· 2· v0·sinα)/g = (v0 2 · sin2α)/g S x S+L – «попадание» Если х S+L, то это означает "перелет".


Компьютерная модель на языке Паскаль Компьютерная модель на языке Паскаль program s1; uses graph; {подключение графического модуля} uses graph; {подключение графического модуля} var g, V0, A, t: real; var g, V0, A, t: real; gr, gm, S, L, x, i, y: integer; gr, gm, S, L, x, i, y: integer;


Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль begin g:=9.8; g:=9.8; readln (v0, a, S, L); gr:=detect; initgraph(gr,gm,""); {вызов процедуры GRAPH} line(0,200,600,200);{чертим ось ох} line(0,0,0,600);{чертим ось оу} setcolor(3);{устанавливаем голубой цвет} line(S*10,200,(S+L)*10,200);{чертим площадку}
Компьютерная модель на языке Турбо Паскаль Компьютерная модель на языке Турбо Паскаль x:=round(v0*v0*sin(2*a*3.14/180)/g); if x S+L then outtextxy(500,100,"perelet") else outtextxy(500,100,"popal"); {записываем результат полёта} readln;closegraph;end.



Когда человек слышит слова «модель» и «моделирование», перед его мысленным взором обычно пробегают картинки из его детства: уменьшенные копии автомобилей и самолетов, глобус, манекен, макеты зданий... Эти и многие другие вещи часто отражают какие-то общие свойства или функции настоящих предметов или объектов, только в более упрощенном виде. Используя такие модели, можно проще объяснить особенности оригинала. Информационная модель, примеры которой наглядно и понятно объясняют многие сложные для понимания процессы, также подчиняется основным требованиям моделирования.

Цели

Вышесказанное может привести нас к такому выводу: модели, являясь подобием реальных предметов или процессов, не должны отображать все свойства оригиналов, а только те характеристики, которые в определенной ситуации более востребованы для их применения. Нет необходимости отображать все многообразие свойств объекта - это может привести к усложнению модели и неудобству ее использования. Поэтому очень важно понимать, с какой целью была создана модель, какие ее параметры должны быть отражены в данном конкретном случае. При моделировании необходимо строго придерживаться такой логической цепочки: «объект - цель - модель».

Информационная модель. Примеры. Системный анализ

При формировании цели моделирования встает вопрос правильности и полноты создания списка качеств и характеристик будущей модели. Описание объекта моделирования часто называют термином "информационная модель". Примеры ее использования можно видеть в различных формах: графических, словесных, табличных, математических и многих других. Чем точнее информационная модель, тем более качественно и полно она отображает совокупность свойств оригинального объекта. Поэтому необходимо выделить только самые необходимые параметры для моделирования и установить связи между ними. Этот процесс называется системным анализом.

Форма представления

Одной из характеристик информационной модели является форма ее представления, которая тесно связана с целью создания образа. Если одним из требований к проекту является его наглядность, то используется графическая информационная модель. Примеры таковой найти не сложно: электрические схемы, карты местности, различные графики и чертежи. Причем одни и те же данные, например, график изменения температуры в течение месяца, можно представить в различных формах, например, в табличной или текстовой.

Использование моделирования

Когда информационная модель сформирована, ее параметры можно использовать для изучения реального объекта, прогнозирования его поведения в различных условиях, проведения расчетов. Часто задействуют смешанные информационные модели. Примеры использования такой формы моделирования часто можно встретить в строительстве, когда формируются и отражаются отдельные характеристики сложного объекта, например, здания, в виде чертежей, математических расчетов прочности и допустимых нагрузок.

Еще одним ярким примером смешанной информационной модели служит географическая карта с ее топографическими символами, надписями, таблицами. Такая модель может также представляться в виде графиков, диаграмм, таблиц, схем. Последние условно разделяются на карты, блок-схемы и графы.

Классификация

Для удобства работы с информационными моделями их условно делят на несколько больших блоков: по области использования, по фактору времени, по отрасли знаний и по форме представления. Также их еще можно разделить по типу построения (табличные, иерархические и сетевые), по форме представления данных (знаковые и образно-знаковые) и по объекту (описание свойств объекта или процесса).

Типичные примеры образной информационной модели

Формы моделей этого типа отличаются графическим изображением объекта, зафиксированным на каком-либо носителе информации (пленке, бумаге, доске).

К такому типу моделей можно причислить различные фотографии, рисунки, графики. Примеры образной информационной модели часто встречаются в учебных заведениях, где на плакатах предоставляется много информации в графическом виде. Еще один вариант ее использования - иллюстрации в любом школьном учебнике, такие как схема построения войск на битве под Сталинградом. Примеры образной информационной модели можно увидеть и в научных организациях, где производится разделение объектов по их внешнему признаку.

Классификация моделей по времени

Модели могут быть статическими и динамическими. Характеристики объекта в определенный срез времени описывают статические информационные модели. Примеры их использования можно встретить при постройке дома, когда рассматриваются его прочность и устойчивость к статической нагрузке. Или в стоматологии, где описывается состояние полости рта пациента во время текущего приема: количество пломб, наличие дефектов и т. д.

Если рассматривать динамику изменения состояния пациента за несколько приемов или в течение нескольких лет, то при описании тех же характеристик будет использоваться динамическая модель.

Примеры динамических информационных моделей встречаются при работе с факторами или характеристиками, которые изменяются во времени. Среди них изменения температур, сейсмические колебания и пр.

Вербальные модели

К информационным относят и вербальные модели, которые представляются в разговорной или мысленной форме. Они еще имеют название "словесные информационные модели". Примеры такого моделирования можно наблюдать при управлении автомобилем: ситуация на дороге, показания светофоров, скорость соседних автомобилей и т. д. анализируются человеком. При этом вырабатывается определенная модель поведения. Если текущая ситуация смоделирована правильно, то данный отрезок пути будет безопасным. Если нет, велика вероятность аварии.

Также к вербальным моделям относят рифму, промелькнувшую в мозгу поэта, или пока еще не нанесенный на холст образ пейзажа перед мысленным взором художника.

К вербальному типу относят и описательную информационную модель, которая представляет собой письменное или устное описание объекта средствами языка. Пример описательной информационной модели: проза в художественных книгах, описания в художественной литературе, текстовое описание событий и объектов.

Знаковые модели

Если характеристики объекта предстают в виде специальных знаков, отображены средствами формального языка, то они являют собой знаковые информационные модели. Примеры оных окружают нас со всех сторон: графики, схемы, тексты и т. д.
Знаковые и вербальные модели тесно взаимосвязаны между собой: мысленный образ можно облечь в знаковую форму, а знаковая модель формирует определенный мысленный образ. Например, прочитав описание какого-либо явления, человек создает себе его модель, и и, встретив это явление в жизни, может его узнать по сформированной модели.

Знаковые информационные модели можно разделить на геометрические, словесные, математические, структурные, логические, специальные.

Математические модели

Как вариант знаковой можно рассмотреть математическую информационную модель. Ее особенность в том, что характеристики, параметры или процессы представлены математическими формулами. Также этот вид описывает соотношения между количественными характеристиками объектов. Например, зная массу тела, мы можем вычислить скорость его свободного падения в определенный момент времени. При этом информационные объекты обычно представлены в форме математических.

Математические модели можно разделить на множество типов: статические, динамические, дискретные, непрерывные, имитационные, вероятностные, логические, множественные, алгоритмические, игровые и т. д.

Табличные модели

Модель, объекты или свойства которой представляются в виде списка, а их значения располагаются в ячейках прямоугольной таблицы, называют табличной. Это один из самых часто встречающихся типов передачи информации. При помощи таблиц есть возможность сформировать статические и динамические информационные модели в различных прикладных областях. В жизни мы используем это, например, когда создаем расписание транспорта, программу телепередач, дневник погоды и т. д.

Виды табличных информационных моделей

Таблицы бывают трех видов: двоичные, «объект-свойство», «объект-объект». Для того чтобы привести примеры табличных информационных моделей, нужно разобрать их структуру.

В таблицах типа «объект-объект» в первой строке и в первом столбце перечисляются объекты. В остальных ячейках отражается взаимоотношение между ними. Таблица, в столбцах и строках которой находятся названия городов, а информационное наполнение показывает наличие качественного характера связи между ними (наличие прямой дороги), может служить образцом типа «объект-объект».

В таблицах типа «объект-свойство» в каждой строке размещаются параметры одного объекта или события, а в столбцах содержится информация об их характеристиках или свойствах. Примером структуры такого типа может быть информация об изменении состояния погоды в разные дни.

Иерархические и сетевые информационные модели

Табличные модели удобны для небольших систем объектов. При создании сложной системы модель может стать слишком большой и неудобной для использования именно из-за того, что она представлена в виде прямоугольной таблицы. Например, если создать в табличном виде схему линий метрополитена с объектами-станциями и указанием, есть ли между ними переход или пересечение, то такая таблица будет иметь огромную избыточность - более десяти тысяч значений, и пользоваться ей окажется очень сложно.

Иерархические системы обычно представлены в графическом виде, в форме графов - связей между объектами, распределенными по уровням. Все элементы верхних уровней состоят из элементов нижних, а элементы нижнего уровня принадлежат только одному элементу более высокого уровня. Частный пример модели такого типа - генеалогическое древо.

Сетевые модели более компактны, так как отражают наиболее важные связи между объектами. Чаще всего они представлены в наглядном графическом виде. Примером такой сетевой модели является схема линий метрополитена.

Использование информационных моделей в процессе моделирования на компьютере

Производить моделирование удобно с использованием вычислительной техники. Сам процесс можно условно разбить на несколько этапов.

Вначале производится построение информационной модели: определение проводимого исследования, выделение важных параметров объекта, соответствующих этой цели, удаление несущественных параметров.

На втором этапе происходит создание формализованной модели: производится выражение описательной информационной модели средствами формального языка, фиксируются отношения между величинами и ставятся необходимые ограничения на их изменение.

На следующем этапе осуществляется преобразование формализованной модели в компьютерную, то есть составление алгоритма, проведение расчетов, написание программ или использование специализированного ПО.

После проверки правильности создания модели и ее соответствия назначенной цели начинается непосредственное использование. При возникновении необходимости проводится коррекция.

Применение вычислительной техники заметно упрощает создание информационных моделей, их изменение, исправление. Имеется возможность поместить смоделированный объект в любое окружение и проверить его поведение или трансформацию характеристик в различных условиях, не подвергая его при этом воздействию данных факторов.

| §1.3 Графические информационные модели

Урок 4
§1.3 Графические информационные модели

Ключевые слова:

Схема
карта
чертёж
график
диаграмма
граф
сеть
дерево

1.3.1. Многообразие графических информационных моделей

В графических информационных моделях для наглядного отображения объектов используются условные графические изображения (образные элементы), зачастую дополняемые числами, символами и текстами (знаковыми элементами). Примерами графических моделей могут служить всевозможные схемы, карты, чертежи, графики и диаграммы.

Схема - это представление некоторого объекта в общих, главных чертах с помощью условных обозначений . С помощью схем может быть представлен и внешний вид объекта, и его структура. Схема как информационная модель не претендует на полноту предоставления информации об объекте. С помощью особых приёмов и графических обозначений на ней более рельефно выделяется один или несколько признаков рассматриваемого объекта. Примеры схем приведены на рис. 1.5.

Рис. 1.5. Примеры схем, используемых на уроках физики, биологии, истории

Уменьшенное обобщённое изображение поверхности Земли на плоскости в той или иной системе условных обозначений даёт нам географическая карта.

Чертёж - условное графическое изображение предмета с точным соотношением его размеров, получаемое методом проецирования . Чертёж содержит изображения, размерные числа, текст. Изображения дают представления о геометрической форме объекта, числа - о величине объекта и его частей, надписи - о названии, масштабе, в котором выполнены изображения.

График - графическое изображение, дающее наглядное представление о характере зависимости одной величины (например, пути) от другой (например, времени) . График позволяет отслеживать динамику изменения данных.

Диаграмма - графическое изображение, дающее наглядное представление о соотношении каких-либо величин или нескольких значений одной величины, об изменении их значений . Более подробно типы диаграмм и способы их построения будут рассмотрены при изучении электронных таблиц.

1.3.2. Графы

Если некоторые объекты изобразить вершинами, а связи между ними - линиями, то мы получим информационную модель в форме графа. Вершины графа могут изображаться кругами, овалами, точками, прямоугольниками и т. д. Ненаправленная (без стрелки) линия, соединяющая вершины графа, называется ребром. Линия направленная (со стрелкой) называется дугой; при этом вершина, из которой дуга исходит, называется начальной, а вершина, куда дуга входит, - конечной.

Граф называется неориентированным , если его вершины соединены рёбрами (рис. 1.6, а). Вершины ориентированного графа соединены дугами (рис. 1.6, б). Путь - это последовательность рёбер (дуг), по которым можно перейти из одной вершины в другую.

Граф называется взвешенным , если его вершины или рёбра характеризуются некоторой дополнительной информацией - весами вершин или рёбер. На рис. 1.6, в с помощью взвешенного неориентированного графа изображены дороги между пятью населёнными пунктами А, В, С, D, Е; веса рёбер - протяжённость дорог в километрах.

Путь по вершинам и рёбрам графа, в который любое ребро графа входит не более одного раза, называется цепью. Цепь, начальная и конечная вершины которой совпадают, называется циклом.

Рис. 1.6. Графы

Граф с циклом называется сетью . Если героев некоторого литературного произведения представить вершинами графа, а существующие между ними связи изобразить рёбрами, то мы получим граф, называемый семантической сетью.

Графы как информационные модели находят широкое применение во многих сферах нашей жизни. Например, можно существующие или вновь проектируемые дома, сооружения, кварталы изображать вершинами, а соединяющие их дороги, инженерные сети, линии электропередач и т. п. - рёбрами графа. По таким графам можно планировать оптимальные транспортные маршруты, кратчайшие объездные пути, расположение торговых точек и других объектов.

Дерево - это граф, в котором нет циклов , т. е. в нём нельзя из некоторой вершины пройти по нескольким различным рёбрам и вернуться в ту же вершину. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь.

Всякая иерархическая система может быть представлена с помощью дерева . У дерева выделяется одна главная вершина, называемая его корнем. Каждая вершина дерева (кроме корня) имеет только одного предка, обозначенный предком объект входит в один класс1* высшего уровня. Любая вершина дерева может порождать несколько потомков - вершин, соответствующих классам нижнего уровня. Такой принцип связи называется «один-ко-многим». Вершины, не имеющие порождённых вершин, называются листьями.

Родственные связи между членами семьи удобно изображать с помощью графа , называемого генеалогическим или родословным деревом.

Ресурс «Живая Родословная» (145555) - инструмент для формирования и анализа генеалогических деревьев, содержащий примеры родословных. С его помощью вы можете изучить генеалогические деревья многих известных семей и построить генеалогическое дерево своей семьи (http://sc.edu.ru/) .

Класс - множество объектов, обладающих общими признаками .

1.3.3. Использование графов при решении задач

Графы удобно использовать при решении некоторых классов задач .

Пример 1 . На рисунке 1.7 изображена схема дорог, связывающих торговые точки А, В, С, D, Е. По каждой дороге можно двигаться только в направлении, указанном стрелкой. Сколько существует различных путей от точки А до точки Е?

Рис. 1.7. Схема дорог, представленная ориентированным графом

В вершину Е можно попасть только из вершин С и D. Если мы будем знать число путей из вершины А в вершину С и из вершины А в вершину D, то, сложив их, получим искомое число путей из А в Е. Действительно, для того чтобы попасть из вершины А в вершину Е, мы просто все пути из вершины А в вершину С дополним дугой СЕ, а пути из вершины А в вершину D дополним дугой DE. Число путей при этом не изменится. Итак, число путей из вершины А в вершину Е равно сумме путей из А в С и из А в П.

Можно сказать, что наша задача распалась на две более простые задачи. Решим каждую из них в отдельности.

В вершину С можно попасть непосредственно из вершины А и из вершины В. В свою очередь, существует единственный путь из вершины А в вершину В. Таким образом, из вершины А в вершину С можно попасть двумя путями: 1 (напрямую из А) + 1 (через В) = 2.

Попробуйте доказать, что путь из вершины А в вершину В - единственный.

Что касается вершины D, она является конечной вершиной для трёх дуг: BD, AD и CD. Следовательно, в неё можно попасть из вершин А, В и С:

Итак, существуют четыре пути из вершины А в вершину D.

Теперь выполним подсчёт путей из А в Е:

2 (через С) + 4 (через D) = 6.

Решение задачи будет гораздо проще, если двигаться от вершины А (начало маршрута) к вершине Е и проставлять веса вершин - число путей из А в текущую вершину (рис. 1.8). При этом вес вершины А можно принять за 1. Действительно, существует единственный способ попасть из А в А - оставаться на месте.

Рис. 1.8. Схема дорог, представленная взвешенным ориентированным графом

Пример 2. Для того чтобы записать все трёхзначные числа, состоящие из цифр 1 и 2, можно воспользоваться графом (деревом) на рис. 1.9.

Дерево можно не строить, если не требуется выписывать все возможные варианты, а нужно просто указать их количество. В этом случае рассуждать нужно так: в разряде сотен может быть любая из цифр 1 и 2, в разряде десятков - те же два варианта, в разряде единиц - те же два варианта. Следовательно, число различных вариантов: 2 2 2 = 8.

Рис. 1.9. Дерево для решения задачи о записи трёхзначных чисел

В общем случае, если известно количество возможных вариантов выбора на каждом шаге построения графа, то для вычисления общего количества вариантов нужно все эти числа перемножить. (Вспомните правило умножения из комбинаторики!)

Пример 3 . Рассмотрим несколько видоизменённую классическую задачу о переправе.

На берегу реки стоит крестьянин (К) с лодкой, а рядом с ним - собака (С), лиса (Л) и гусь (Г). Крестьянин должен переправиться сам и перевезти собаку, лису и гуся на другой берег. Однако в лодку кроме крестьянина помещается либо только собака, либо только лиса, либо только гусь. Оставлять же собаку с лисой или лису с гусём без присмотра крестьянина нельзя - собака представляет опасность для лисы, а лиса - для гуся. Как крестьянин должен организовать переправу?

Для решения этой задачи составим граф, вершинами которого будут исходное и результирующее размещение персонажей на берегах реки, а также всевозможные промежуточные состояния, достигаемые из предыдущих за один шаг переправы. Каждую вершину-состояние переправы обозначим овалом и свяжем рёбрами с состояниями, образованными из неё (рис. 1.10).

Недопустимые по условию задачи состояния выделены пунктирной линией; они исключаются из дальнейшего рассмотрения. Начальное и конечное состояния переправы выделены жирной линией.

На графе видно, что существуют два решения этой задачи. Приведём соответствующий одному из них план переправы:

1) крестьянин перевозит лису;
2) крестьянин возвращается;
3) крестьянин перевозит собаку;
4) крестьянин возвращается с лисой;
5) крестьянин перевозит гуся;
6) крестьянин возвращается;
7) крестьянин перевозит лису.

Пример 4. Рассмотрим следующую игру: сначала в кучке лежат 5 спичек; два игрока убирают спички по очереди, причём за 1 ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку. Выясним, кто выигрывает при правильной игре - первый (I) или второй (II) игрок.

Игрок I может убрать одну спичку (в этом случае их останется 4) или сразу 2 (в этом случае их останется 3).

Если игрок I оставил 4 спички, игрок II может своим ходом оставить 3 или 2 спички. Если же после хода первого игро- . ка останутся 3 спички, второй игрок может выиграть, взяв две спички и оставив одну.

Если после игрока II осталось 3 или 2 спички, то игрок I в каждой из этих ситуаций имеет шанс на выигрыш.

Таким образом, при правильной стратегии игры всегда выиграет первый игрок. Для этого своим первым ходом он должен взять одну спичку.

На рис. 1.11 представлен граф, называемый деревом игры; на нём отражены все возможные варианты, в том числе ошибочные (проигрышные) ходы игроков.

Рис. 1.11. Дерево игры

САМОЕ ГЛАВНОЕ

В графических информационных моделях для наглядного отображения объектов используются условные графические изображения (образные элементы), зачастую дополняемые числами, символами и текстами (знаковыми элементами). Примерами графических моделей могут служить всевозможные схемы, карты, чертежи, графики и диаграммы, графы.

Граф состоит из вершин, связанных линиями - рёбрами или дугами . Граф называется взвешенным , если его вершины или рёбра (дуги) характеризуются некоторой дополнительной информацией - весами вершин (рёбер, дуг).

Граф иерархической системы называется деревом . Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

2. Какие информационные модели относят к графическим?

3. Приведите примеры графических информационных моделей, с которыми вы имеете дело:

а) при изучении других предметов;
б) в повседневной жизни.

4. Что такое граф? Что является вершинами и рёбрами графа на рис. 1.6, в? Приведите примеры цепей и циклов, имеющихся в этом графе. Определите, какие два пункта наиболее удалены друг от друга (два пункта считаются самыми удалёнными, если длина кратчайшего пути между ними больше, чем длина кратчайшего пути между любыми другими двумя пунктами). Укажите длину кратчайшего пути между этими пунктами.

5. Приведите пример системы, модель которой можно представить в форме графа. Изобразите соответствующий граф.

6. Грунтовая дорога проходит последовательно через населённые пункты А, В, С и D. При этом длина грунтовой дороги между А и В равна 40 км, между В и С - 25 км, и между С и D - 10 км. Между А и D дороги нет. Между А и С построили новое асфальтовое шоссе длиной 30 км. Оцените минимально возможное время движения велосипедиста из пункта А в пункт В, если его скорость по грунтовой дороге - 20 км/ч, по шоссе - 30 км/ч.

7. На рисунке изображена схема дорог, связывающих торговые точки А, Б, В, Г, Д, Б, К. По каждой дороге можно двигаться только в направлении, указанном стрелкой. Сколько существует различных путей от точки А до точки К?

8. Работая в группе, составьте семантическую сеть по одной из русских народных сказок: «Колобок», «Курочка Ряба», «Репка».

9. Что такое дерево? Моделями каких систем могут служить деревья? Приведите пример такой системы.

10. Сколько трёхзначных чисел можно записать с помощью цифр 2, 4, 6 и 8 при условии, что в записи числа не должно быть одинаковых цифр?

11. Сколько существует трёхзначных чисел, все цифры которых различны?

12. Для составления цепочек используются бусины, помеченные буквами А, В, С, D, Е. На первом месте в цепочке стоит одна из бусин А, С, Е. На втором - любая гласная, если первая буква гласная, и любая согласная, если первая согласная. На третьем месте - одна из бусин С, D, Е, не стоящая в цепочке на первом месте. Сколько цепочек можно создать по этому правилу?

13. Два игрока играют в следующую игру. Перед ними лежит куча из 6 камней. Игроки берут камни по очереди. За один ход можно взять 1, 2 или 3 камня. Проигрывает тот, кто забирает последний камень. Кто выигрывает при безошибочной игре обоих игроков - игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.

Поделиться: